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Fig. 7. Relationship between output currents A7 and the characteristic im-
pedance for Josephson packaging, where bias current I is 0.28 mA.

current 7, is about 0.08 mA for the case of a Josephson CIL
receiver [4], considering the existence of thermal noise. When a
higher characteristic impedance is used, the output voltage of the
lead-alloy Josephson driver, with gap voltage V, = 2.8 mV, is not
sufficient, as shown in Fig. 7. It is necessary to use Josephson
drivers which consist of higher gap energy superconductors such
as NbN, or 2V, operation drivers. For those drivers with high
drivability, the limitation of the receiver sensitivity is not a
serious problem. In particular, the device chips and packaging
parts, which consist of the Nb-NbN /Nb, O, /NbN-Nb junction
systems with V, = 4.2 mV [18] and higher Z, Nb/NbN supercon-
ducting striplines with Nb ground planes, are preferable and can
be practical in the near future from the viewpoints of low-noise
electrical properties and reliable mechanical construction.

In order to realize large-scale superconducting systems, devices
with high drivability, highly sensitive receivers, and high-imped-
ance superconducting transmission lines are needed. When a
higher impedance of Z,=40-50 @ is used in superconducting
packaging, the matching capacitor does not play as important a
role and should be omitted from the standpoint of decreasing
crosstalk.

IV. ConNcrLusioN

The characteristic impedance influences of superconducting
packaging systems (in particular, Josephson packaging) on fast
switching signal propagation characteristics such as degraded
switching time, amplitude distortions and crosstalk, signal propa-
gation delay, and amplitude decay at the inductive and resistive
connectors with matched capacitors were quantitatively evaluated
for the first time by using the ASTAP computer simuiation. The

present choice of the characteristic impedance Z, =10-12 Q for,

a superconducting stripline is not adequate. The higher imped-
ance of Z;=40-50 Q is useful from the standpoint of noise
margin. A higher impedance choice makes ground connectors of
the various connectors decrease, which is very useful for the
large-scale package system.

In summary, in order to reduce amplitude distortions of trans-
mitted ultrafast sig als in superconducting technology, it is im-
portant not only to :duce the interconnection inductance values,
but also to realize niform transmission superconducting lines
with a higher characteristic impedance of Z, = 40-50 €, a highly
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sensitive superconductive, receiver, and a superconducting driver
with large drivability.
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Calculation of High-Resolution SAR Distributions
in Biological Bodies Using the FFT Algorithm and
Conjugate Gradient Method

DAVID T. BORUP AND OM P. GANDHI, FELLOW, IEEE

Abstract — A new method for the calculation of absorption in inhomoge-
neous, lossy dielectrics is presented. In this method, the convolutional
nature of the electric-field integral equation is exploited by use of the FFT
algorithms and the conjugate gradient method (CGM). The method is
illustrated by solving for the SAR distribution for an anatomical cross
section through the human eyes at 1 GHz.
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1. INTRODUCTION

In a previous paper [1], a fast-Fourier-transform (FFT) method
was presented for the calculation of high-resolution specific ab-
sorption rate (SAR) distributions in biological bodies. In that
paper, the convolutional nature of the electric-field integral equa-
tion was exploited by use of the computationally efficient FFT
algorithm and the method of steepest descent. The resulting
numerical method for solving the matrix equation obtained by
the method of moments was shown to be superior to matrix
inversion, reducing the computation requirement from N3 to
N log, (N) and the storage requirement from N? to N, where N
is the number of unknown field sample points.

In this paper, an improvement in the method is made by
replacing the steepest descent method with the conjugate gradient
method (CGM), which converges more rapidly.

II. IMPLEMENTATION OF THE METHOD

The following discussion is a brief review of how the FFT
method is implemented for the two-dimensional scalar problem
of an arbitrary dielectric cylinder exposed to a transverse mag-
netic (TM) incident field.

As in Richmond [2], the two-dimensional electric-field integral
equation is first discretized by the pulse basis. Then a linear
system is arrived at by point matching. The resulting linear
system is

E_f(n,m)=E:(n,m)+22(e,j—l)Ez(i,j)K(n,m,i,j)
1y

ey
where
El(n,m) incident field at the center of pulse (n, m),
E.(n,m) total field at the center of pulse (n, m),
€,, complex relative permittivity of pulse (i, ;)
and

.k2
K(n,m,i,j) =0 [[ B (koR,,,) dx dy
uy

where k, is the free-space propagation constant, s, , is the surface
of pulse (i, j), and
2
Ry = (5 = %)+ (3= 3))".

In Richmond’s method, the two-dimensional grid of sample
points is linearly ordered to give a matrix equation which is then
solved by matrix inversion. This requires computer storage pro-
portional to N? and an amount of computation proportional to
N®.

However, if the discretization grid is rectangular and the x and
y increments are constant, then K is a function of the shifts
(n—1i) and (m — j) only. In this case, the double sum in (1) is a
two-dimensional discrete convolution. This allows the sum in (1)
to be computed efficiently via the convolution theorem and the
two-dimensional FFT algorithm. This approach requires storage
proportional to N and an amount of computation proportional
to Nlog, (N). -

This numerically efficient method for computing the forward
matrix product (proportional to N log, (N) versus N? for direct
summation) suggests that the FFT algorithm can be used to
implement any iterative matrix method that involves only for-
ward matrix products. In addition, any iterative scheme that also
requires the conjugate transpose operator can also be imple-
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mented since, if the linear operator 4 is defined by

Ax=x(n,m)+22(e,l~1)x(i,j)K(nfi,m—j) 2)

then the conjugate transpose operator 4 is given by

A”x=x(n,m)+(cj"j—I)ZZx(i,j)K*(n—i,m~j).

(3)

In particular, the method of steepest descent and the CGM

described by Sarkar, Siarkiewitz, and Stratton [3] can be imple-
mented in this way.

III. Tae CONJUGATE GRADIENT METHOD
The CGM, for the solution of Ax = y, is defined by
n=Axy~y
Po=— AH"O

= — H_ 2 2
Xyl = Xy + ,Py i, = ”A l‘"” / ”Apn“

La=h + tnApn

pl1+l=_AH’;1+qnpn qn=“A1]rn+1“2/||AH’;z“2'

The asymptotic rate of convergence for the CGM is much faster
than that of the method of steepest descent.

An important advantage of the CGM over other iterative
methods such as the method of steepest descent is that the CGM
is a finite step method. A finite step method is one which
converges to the exact solution in a finite number of steps
neglecting truncation and roundoff errors. The CGM is known to
converge in a number of steps equal to the number of indepen-
dent eigenvalues of the operator 4. This is an advantage usually
associated only with the direct methods such as Gaussian
elimination.

The method further enjoys the advantage of an iterative method
in that the truncation error does not accumulate but is limited to
that incurred during the last iteration. This allows the CGM to
succeed in cases where direct methods fail.

IV. RESULTS

It was demonstrated in [1] that the FFT method yields excel-
lent agreement with the analytic solutions for homogeneous and
layered inhomogeneous circular cylinders. As a further example
of the ability of the FFT method to handle electrically large
two-dimensional TM problems, consider the anatomical cross
section through the human eyes shown in Fig. 1.

The eight-tissue dielectric model was created from a published
cross section [4] by an optical image digitizer. The problem was
solved for a 1-GHz plane-wave incident field on an Eclipse
microcomputer equipped with an array processor. Solution to a
10~ residual magnitude required on the order of one hundred
iterations, each iteration requiring about four minutes. Because
the amount of core memory available was small, the FFT al-
gorithm had to be decomposed by Singleton’s algorithm [5]. This
decomposition drastically increases the amount of disk transfer
per iteration and accounts for the large amount of computer time
needed. Solution on a larger computer capable of holding the
entire FFT array in core would take much less time.

The SAR distribution obtained is shown in Fig. 2. Because of
the small skin depth at this frequency, the absorption is mostly
frontal, falling off exponentially toward the interior. An interest-
ing feature of the distribution is the relatively high SAR (1.59 X
10™* W /kg for E;,, =1 V/m) at points 4 and B in the vitreous
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Fig. 1. An eight-tissue model of a human cross section through the eyes. The

dielectric values used were taken from [6].

Plane wave incident field = 1 V/m

Frequency = 1' GHz

[irttv,,
. 2

Maximum value of SAR

= 1.59 x 1074 W/kg

Fig. 2. Isometric plot of the FFT calculated SAR distribution for the head

cross section.

humor of the eyes. These peaks may be due to the fact that the
size of the vitreous humor bodies are very close to one internal
wavelength at this frequency.

The very shallow deposition at frequen01es about 1 GHz may
suggest the possibility of inhomogeneous modeling of only 2 to 3
skin depths into the body, reducing the number of unknowns
drastically.

V. CONCLUSIONS

This paper illustrates the ability of the FFT method to obtain
high-resolution SAR distributions for the two-dimensional TM
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absorption problem. Because the more general three-dimensional
electric-field integral equation is also a convolution, it should be
possible to extend the approach to the three-dimensional absorp-
tion problem.
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Characteristic 1mpedance of the Slab Line with an
Amsotroplc Dielectric

HISASHI SHIBATA, YUKIO KIKUCHI
AND RYUITI TERAKADO

Abstmct —The characteristic impedance of the slab line with a c1rcular
coriductor having an anisotropic dielectric is presented by using the affine
and conformal transformations. Moreover, a simpler approximate formula
of the impedance expressed in terms of €, €, , and r/h is also presented,
where ¢, €, , r, and h are the principal axes—relative dielectric constants
of the anisotropic dielectric, the inner conductor radius, and the half length
between ground planes, respectively.

L INTRODUCTION

The slab line with a concentric circular conductor having an
isotropic dielectric between parallel ground planes is used as the
slotted section in microwave measurements and has been analyzed
by many authors [1]-[5].

Due to the stability of its electrical propertles an amsotroplc
dielectric has been used in microwave 1ntegrated circuits. For
various shielded striplines and covered microstrips, the analyses
and some of the effects resulting from the utilization of an
amsotroplc dielectric have been reported [6]-[16].

This paper presents the characteristic 1mpedance of the slab
line with an anisotropic dielectric shown in Fig. 1. The permittiv-
ity tensor of the anisotropic dielectric in Fig. 1 is presented as

. g 0 1

o=l W
The application of the. structﬁre of Fig. 1 is not extensiVe.
However, it is useful to analyze the line of Fig. 1 because it is a
more general case than just including an isotropic dielectric. ‘

It is useful to apply a transform method [6], [10] for the
analysis of the slab line shown in Fig. 1. By the affine transfor-
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