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Fig, 7. Relationship between output currents A I and the characteristic im-

pedance for Josephson packaging, where bias current 18 is 0,28 mA,

current 1~, is about 0.08 mA for the case of a Josephson CIL

receiver [4], considering the existence of thermal noise. When a

higher characteristic impedance is used, the output voltage of the

lead-alloy Josephson driver, with gap voltage V,, = 2.8 mV, is not

sufficient, as shown in Fig. 7. It is necessary to use Josephson

drivers which consist of higher gap energy superconductors such

as NbN, or 2 Vg operation drivers. For those drivers with high

drivability, the limitation of the receiver sensitivity is not a

serious problem. In particular, the device chips and packaging

parts, which consist of the Nb-NbN/Nb205 /NbN–Nb junction

systems with Vg = 4.2 mV [18] and higher ZO Nb/NbN supercon-

ducting striplines with Nb ground planes, are preferable and can

be practical in the near future from the viewpoints of low-noise

electrical properties and reliable mechanical construction.

In order to realize large-scale superconducting systems, devices

with high drivability, highly sensitive receivers, and high-imped-

ance superconducting transmission lines are needed. When a

higher impedance of ZO = 40–50 Q is used in superconducting

packaging, the matching capacitor does not play as important a

role and should be omitted from the standpoint of decreasing

crosstalk.

IV. CONCLUSION

The characteristic impedance influences of superconducting

packaging systems (in particular, Josephson packaging) on fast

switching signaf propagation characteristics such as degraded

switching time, amplitude distortions and crosstalk, signal propa-

gation delay, and amplitude decay at the inductive and resistive

connectors with matched capacitors were quantitatively evaluated

for the first time by using the ASTAP computer simulation. The

present choice of the ch~acteristic impedance ZO = 10-12 Q for

a superconducting stripline is not adequate. The higher imped-

ance of ZO = 40–50 Q is useful from the standpoint of noise

margin. A higher impedance choice makes ground connectors of

the various connectors decrease, which is very usefuf for the

large-scale package system,

In summary, in order to reduce amplitude distortions of trans-

mitted ultrafast sig als in superconducting technology, it is im-

portant not only to :duce the interconnection inductance values,

but also to realize niform transmission superconducting lines

with a higher characteristic impedance of ZO = 40–50 f!, a highly

sensitive superconductive, receiver, and a superconducting d~ver

with large drivability.
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Calculation of High-Resolution SAR Distributions

in Biological Bodies Using the FFT Algorithm and

Conjugate Gradient Method

DAVID T. BORUP AND OM P. GANDHI, FELLOW,IEEE

Abstract —A new method for the calculation of absorption in inhomoge-

neous, iossy dielectrics is presented. In this method, the convolutional

nature of the electric-field integraf equation is exploited by use of the FFT

algorithms and the conjugate gradient method (CGM). The method is

illustrated by solving for the SAR distribution for an anatomical cross

section through the human eyes at 1 GHz.
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I. INTRODUCTION

In a previous paper [1], a fast-Founer-transform (FFT) method

was presented for the calculation of high-resolution specific ab-

sorption rate (SAR) distributions in biological bodies. In that

paper, the convolutional nature of the electric-field integral equa-

tion was exploited by use of the computationally efficient FFT

algorithm and the method of steepest descent. The resulting

numerical method for solving the matrix equation obtained by

the method of moments was shown to be superior to matrix

inversion, reducing the computation requirement from N3 to

N log~ ( N) and the storage requirement from N2 to N, where N

is the number of unknown field sample points.

In this paper, an improvement in the method is made by

replacing the steepest descent method with the conjugate gradient

method (CGM), which converges more rapidly.

II. IMPLEIWNTATION OF THE METHOD

The following discussion is a brief review of how the FFT

method is implemented for the two-dimensional scalar problem

of an arbitrary dielectric cylinder exposed to a transverse mag-

netic (TM) incident field.

As in Richmond [2], the two-dimensional electric-field integral

equation is first discretized by the pulse basis. Then a linear

system is arrived at by point matching. The resulting linear

system is

E:(n, m)= E:(n, m)+~x(cz, –l)~=(i, j)~(~2~, ~,~)

lJ

(1)

where

E; ( n, m) incident field at the center of pulse (n, w),

E: ( ~z,rn) total field at the center of pulse (n, m),

c,, complex relative permittivity of pulse (i, j)

and

where k. is the free-space propagation constant, s,] is the surface

of pulse (i, j), and

~,zm = ((% - X’)+(ym - y’))’z’.

In Richmond’s method, the two-dimensional grid of sample

points is linearly ordered to give a matrix equation which is then

solved by matrix inversion. This requires computer storage pro-

portional to N2 and an amount of computation proportional to
N3,

However, if the discretization grid is rectangular and the x and

y increments are constant, then K is a function of the shifts
( )Z– i) and (m – j) only. In this case, the double sum in (1) is a

two-dimensional discrete convolution. This allows the sum in (1)

to be computed efficiently via the convolution theorem and the

two-dimensional FFT algorithm. This approach requires storage

proportional to N and an amount of computation proportional

to N logz (N).

This numerically efficient method for computing the forward

matrix product (proportional to N log2 (N) versus N2 for direct

summation) suggests that the FFT algorithm can be used to

implement any iterative matrix method that involves only for-

ward matrix products. In addition, any iterative scheme that also

requires the conjugate transpose operator can also be imple-

mented since, if the linear operator A is defined by

Ax=x(n, m)+~~(c,J –l)x(i, j) K(n–i, m–j) (2)

IJ

then the conjugate transpose operator A is given by

.4 F’x=x(n, m)+(cfi -l)~~x(i, j) K*(n-i, m-j).

ZJ

(3)

In particular, the method of steepest descent and the CGM

described by Sarkar, Siarkiewitz, and Stratton [3] can be imple-

mented in this way.

III. THE CONJUGATE GRADIENT METHOD

The CGM, for the solution of Ax= y, is defined by

ro=Axo–y

PO = –AHr o

x,, + ~ = x,, + t,, pn t.= llAHq,112/llAPn112

%+1 = rn + t,,Ap,,

P,, +I = –AH<, + qripn % = llA’Tr~+l112/ llAHrt112.

The asymptotic rate of convergence for the CGM is much faster

than that of the method of steepest descent.

An important advantage of the CGM over other iterative

methods such as the method of steepest descent is that the CGM

is a finite step method. A finite step method is one which

converges to the exact solution in a finite number of steps

neglecting truncation and roundoff errors. The CGM is known to

converge in a number of steps equal to the number of indepen-

dent eigenvalues of the operator A. This is an advantage usually

associated only with the direct methods such as Gaussian

elimination.

The method further enjoys the advantage of an iterative method

in that the truncation error does not accumulate but is limited to

that incurred during the last iteration. This allows the CGM to

succeed in cases where direct methods fail.

IV. RESULTS

It was demonstrated in [1] that the FFT method yields excel-

lent agreement with the analytic solutions for homogeneous and

layered inhomogeneous circular cylinders. As a further example

of the ability of the FFT method to handle electrically large

two-dimensional TM problems, consider the anatomical cross

section through the human eyes shown in Fig. 1.

The eight-tissue dielectric model was created from a published

cross section [4] by an opticaf image digitizer. The problem was

solved for a l-GHz plane-wave incident field on an Eclipse

microcomputer equipped with an array processor. Solution to a

10-3 residual magnitude required on the order of one hundred

iterations, each iteration requiring about four minutes. Because

the amount of core memory available was small, the FFT al-

gorithm had to be decomposed by Singleton’s algorithm [5]. This

decomposition drastically increases the amount of disk transfer

per iteration and accounts for the large amount of computer time

needed. Solution on a larger computer capable of holding the

entire FFT array in core would take much less time.

The SAR distribution obtained is shown in Fig. 2. Because of

the small skin depth at this frequency, the absorption is mostly

frontal, falling off exponentially toward the interior. An interest-

ing feature of the distribution is the relatively high SAR (1.59x

10-4 W/kg for ~inC = 1 V/m) at points A and B in the vitreous
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TISSUE ‘r “
/s1. SKIN 44.5 1.01

11. FAT 6.4 0.12

111. MUSCLE 50.5 1.3

Iv. 80NE 6.4 0.12

V. BRAIN 4B. O 1.25

VI. HUNOR 80.0 1.9

VII. LENS 50.5 1.3

VIII. NASAL 25 .6

64 x 64 = 4096 CELLS
FREQUENCY = 1 GHz
LEPIGTtl = 20 ml
# VONZEROCELLS = 2600

Fig. 1. An eight-tissue model of a human cross section through the eyes. The

dielectric values used were taken from [6].

Plane wave incident field . 1 “,.

Fvequency = 1 GHz

= 1.59 x 10-4 W/kg

Fig. 2. Isometric plot of the FFT-calculated SAR distribution for the head

cross section.

humor of the eyes. These peaks may be due to the fact that the

size of the vitreous humor bodies are very close to one internal

wavelength at this frequency.

The very shallow deposition at frequencies about 1 GHz may

suggest the possibility of inhornogeneous modeling of only 2 to 3

skin depths into the body, reducing the number of unknowns

drastically.

V CONCLUSIONS

This paper illustrates the ability of the FFT method to obtain

high-resolution SAR distributions for the two-dimensional TM

absorption problem. Because the more generaf three-dimensional

electric-field integral equation is also a convolution, it should be

possible to extend the approach to the three-dimensionaf absorp-

tion problem.
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Characteristic Impedance of the Slab Line with an

Anisotropic Dielectric

HISASHI SHIBATA, YUKIO KIKUCHI,
AND RYUITI TERAKADO

Abstract —Ttte characteristic impedance of the slab line with a circular

condnctor havirng an anisotropic dielectric is presented by rising the affine

and conformal transformations. Moreover, a simpler approximate’ forrnnfa

of the impedance expressed in ternrs of cl,, c ~, and r/h is afSO presented,

where Cll, .S~, r, and h are the principal axes-relative dielectric constants

of the anisotropic dielectric, the inner conductor radins, and the baff Ien&h

between gronnd planes, respectively.

I. INTRODUCTION

The slab line with a concentric circular conductor having an

isotropic dielectric between parallel ground planes is used as the

slotted section in microwave measurements and has been anal~ed

by many authlors [1]-[5].

Due to the stability of its electrical properties, an anisotropic

dielectric has been used in microwave integrated circuits. For

various shieldled striplines and covered microstrips, the analyses

and some of the effects resulting from the utilization of an

anisotropic dielectric have been reported [6]–[16].

Tl@ paper presents the characteristic impedance of the slab

line with an anisotropic dielectric shown in Fig. 1. ,The permittiv-

ity tensor of the anisotropic dielectric in Fig. 1 is presented as

The amlication of the structure of Fig. 1 is not extensive.

Howe;e;, it is useful to analyze the line ;f Fig. 1 because it is a

more general case than just including an isotropic dielectric.

It is useful to apply a transform method [6], [10] for the

analysis of the slab line shown in Fig. 1. By the affine transfor-
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